
GenApp, Containers and Abaco
Technical Paper

Emre Brookes∗
The University of Texas Health Science Center

San Antonio, TX
brookes@uthscsa.edu

Joe Stubbs
Texas Advanced Computing Center

Austin, TX
jstubbs@tacc.utexas.edu

ABSTRACT
GenApp is an NSF-funded framework for rapid generation of appli-
cations including feature rich science gateways. GenApp is being
successfully used to produce science gateways wrapping scientific
programs. Its organization is designed to simplify the process of
adding new features and capabilities to generated applications. A
limited set of definition files define application generation. To bring
a new executable into GenApp, one creates a single “module” def-
inition file. The executable must run on some compute resource
accessible by the generated application. Installations of the exe-
cutable on target resources may be complex. To simplify portability
of execution, we introduce automatic containerization of defined
modules and integration of container execution. Abaco is an NSF-
funded web service and distributed computing platform providing
functions-as-a-service (FaaS) to the research computing community.
Abaco implements functions using the Actor Model of concurrent
computation. We introduce GenApp integration of execution with
Abaco as a resource.

CCS CONCEPTS
• Software and its engineering→ Software design techniques;
Software development methods;

KEYWORDS
Science gateway, Container, Actor

ACM Reference Format:
Emre Brookes and Joe Stubbs. 2019. GenApp, Containers and Abaco: Tech-
nical Paper. In Practice and Experience in Advanced Research Computing
(PEARC ’19), July 28-August 1, 2019, Chicago, IL, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3332186.3332191

1 INTRODUCTION
In this paper, we begin with background on Containers, Abaco and
GenApp. Subsequently, we provide details on new developments.
GenApp has been installed into a container and extended to build
containers from defined modules. Additionally, GenApp has been

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7227-5/19/07. . . $15.00
https://doi.org/10.1145/3332186.3332191

extended to support execution on Abaco resources. These develop-
ments enhance the portability of execution and installation by using
container technology and Abaco resources. Once the structure of
GenApp has been understood, it is a straightforward process to add
new capabilities as we will demonstrate in this paper which could
be used as a template for future novel compute resource targets.

2 BACKGROUND
2.1 Containers
Linux container runtimes leverage features of the operating system
kernel such as cgroups and namespaces to provide process-level
isolation for applications. While virtual machines virtualize hard-
ware interfaces and contain a complete operating system running
over a hypervisor, containers are userland processes sharing the un-
derlying host’s kernel. As a result, the start up time for a container
tends to be much shorter, on the order of 100-200 ms, compared to
that of a virtual machine, which can be on the order of minutes. It
is common for containers to run within a rooted file system and
isolated network stack, making them self-contained, executable
packages whose only dependency is the container runtime. As a
result, containers can be used to increase application portability
with a minimal performance tradeoff.

2.2 Abaco
Abaco (Actor Based Containers, [1]) is a distributed computing
platform funded by the National Science Foundation (OAC-1740288)
based on the Actor Model of concurrent computation and Docker1
containers. The Actor Model is a theoretical model of computation
in which "actors", the computational primitives, receive messages
addressed to them. In response to receiving a message, an actor can:
1) perform a computation and save state, 2) send messages to other
actors, and 3) create new actors. An individual actor can only affect
its private state: interaction with other actors is limited to sending
them messages. Since the number of actors can grow throughout
the execution, and since individual actors are independent, the
Actor Model is inherently concurrent.

In Abaco, users associate actors with Docker container images,
and the Abaco system generates a unique HTTP URI for each such
registered actor. Once an actor has been registered, an agent can
send a message to the actor by making an HTTP request to the
actor’s URI. For each message sent to an actor, Abaco executes
a container from the actor’s image, injecting the message data
into the container, either as an environment variable in the case
of text data, or over a Unix Domain Socket, in the case of binary
data. Abaco will queue additional messages received for a given

1https://www.docker.com

https://doi.org/10.1145/3332186.3332191
https://doi.org/10.1145/3332186.3332191

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Emre Brookes and Joe Stubbs

actor and execute containers accordingly, as resources become
available. Actors can leverage a state property to store arbitrary data
across container executions; alternatively, actors can be registered
as “stateless” enabling Abaco to start multiple actor containers in
parallel. See Figure 1.

Figure 1: Abaco usage workflow: Creators build functions
deployed in containers, send them to a public registry, then
create and share actors via web service calls. Users execute
functions by making web service calls that send a message
to a specific actor. Figure © 2019 Joe Stubbs

Abaco actors are empowered to register new actors and send
messages to existing actors, just as in the traditional Actor Model.
More generally, the actor can make authenticated API requests to
any TACCAPI by utilizing short-term OAuth access tokens injected
into the actor’s container at startup by the Abaco system. Actors
can also be configured with POSIX interfaces to high performance
storage within the TACC datacenter, such as the global parallel file
system, Stockyard, and Corral, the data collections storage system.
In these cases, actor containers are launched using the UID and
GID associated with the owner of the actor so that file access is in
accordance with the permissions on the underlying file systems.

2.3 GenApp
GenApp [2–4] is a tool developed under the international CCP-
SAS [5] project, jointly funded by the EPSRC (EP/K039121/1) and
NSF (CHE-1265817). The grant focused on advances in small angle
scattering software and included a requirement to expose a diverse
collection of software via a web portal. The initial software suites
consisted of programs written in Python, C++ and Fortran. We
needed a way to wrap them into a full featured web interface sup-
porting multiple execution methods and requiring minimal short
and long term effort to develop and maintain. As we did not relish
maintaining a new collection of hand written code and finding no
satisfactory extant tools for this purpose, we created GenApp. The
primary goal of GenApp was to simplify creation of applications
wrapping collections of existing program modules. GenApp is tar-
get language agnostic, and is designed from inception be able to
build applications on a variety of targets. Currently our “html5” web
based target is our most capable target language, but Qt variants and
Java GUI targets are also available and planned for advancement.
GenApp has successfully been used to develop multiple science

gateways2 and has since received dedicated NSF funding for further
development.

GenApp generated science gateways support many features, in-
cluding multiple job execution models, an integrated server based
file system (to allow reuse of input or output files), OAuth support
for login, messaging, context sensitive help (module and field based
help), full job history with the capability to attach to running or
previously run jobs, administrator mode with user management,
project management, integrated context sensitive feedback3, inte-
grated plotting (2D, 3D and a vast variety of others4, and interactive
atomic structure display5. Additional features are added as needed
by use cases. Websites generated are typically hosted on a VM, be it
on a developer’s laptop, dedicated host, or cloud resources such as
NSF/Jetstream [6], TACC/Rodeo6, or AWS where prepared images
are available7.

The extensible variety of current execution models include run-
ning on local or managed compute resources such as those available
from NSF/XSEDE [7]. GenApp integration with Apache Airavata
for the application execution has been prototyped [3]. Apache
Airavata [8] is a software framework that enables one to com-
pose, manage, execute, and monitor large scale applications and
workflows on distributed and queue-managed computing resources
such as local clusters, supercomputers, computational grids and
clouds. OpenStack [9] as a target resource with optional job-specific
XSEDE project accounting has been integrated into GenApp [10],
to support efficient elastic cloud computing on NSF Jetstream.

GenApp documentation is available on our web-site8. Some of
the material covered later in this section, particularly, deploying and
modifying the “Energy Calculator” application (Fig. 3) is available
online9. For more information on additional training or for any
questions, interested individuals can subscribe to the users’ mailing
list10.

2.3.1 Organization. The generation of applications is driven by
four primary types of definition files as shown in Fig. 2. Definition
files simplify utilization by being the definitive reference for all
configuration options. The one directives file is the entry point
for generation and contains overall application information includ-
ing a list of target languages to generate. Each target language,
such as “html5” for science gateways, has its own definition file
which contains assembly instruction details. The menu definition
file describes the user facing organization of underlying component
modules, and thusly references needed module files. Each module
definition file describes an underlying executable program. The
module file can be thought of as an interface description language
(IDL) describing inputs and outputs combined with a user interface
description language (UIDL) describing an interactive user interface

2SASSIE-web https://genapp.rocks/sassie2 has over 600 registered users and has run
over 20k jobs in 2018. Other GenApp generated gateways and learning materials can
be reached from https://genapp.rocks
3The job input and output objects can be automatically attached to simplify user
support.
4Limited support for Flot, greater support for Bokeh and full support of all Plotly types.
5JSMol and NGL
6https://www.tacc.utexas.edu/systems/rodeo
7https://genapp.rocks/get
8https://genapp.rocks
9https://genapp.rocks/learn (see “GenApp Basics” tutorial)
10http://genapp.rocks/join

GenApp, Containers and Abaco PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Figure 2: GenApp organizational overview. GenApp processes the definition files to generate applications. The language defi-
nition files contain target language specific assembly instructions including references to code fragments which are modified
assembled to produce the applications (icosahedra). Figure © 2019 Emre Brookes

along with any additional information needed to install or run the
executable.

The running of generated science gateways is supported by
two additional definition files which can change dynamically11.
The application configuration file contains information such as
IP addresses and available execution resources. The secrets file
contains any required long lived passwords or tokens.

In summary, the definition files are: directives; menu; module –
per module/executable; target-language – per target language; app-
config; and secrets. All definition files in GenApp are JSON [11] for-
matted. Due to its popularity with web development, JSON parsers
are available for most languages. JSON contains nested keys and
values.

To simplify exposition, we refer to values using a definition-
file:key notation, e.g. a module’s executable value will be referred
to as module:executable. Additional “:key”s may be appended to
the notation for nested values. When context is clear, values may
be referred to simply with the final :key.

2.3.2 Definition files. To create an application, a researcher
must once create the directives global definition file describing the
application attributes such as title, default colors and the set of tar-
get languages to process. The researcher’s primary hurdle to bring
a new executable into GenApp is to properly create the module
definition file and wrap or modify their executable to accept input

11after GenApp generation of the application.

and produce output as defined in their module definition file. Addi-
tionally, collections of modules are organized in the menu definition
file. Once all definition files are properly created, applications are
generated by running the GenApp command line program which
produces working instances for all directives:languages.

A module is some defined executable within GenApp. All input
and output to a module’s executable (module:executable) are JSON
objects. An executable wrapper can be written in any language
that can convert the native input and output to JSON. The module
definition file (Fig. 3, left) contains all information about the module.
This, of course, includes all input and output fields, module:fields.
Each field is uniquely defined with an ID. In addition, the attribute
key for each field is the module:field:type, which can take values
such as “integer”, “text”, “plot”, “atomicstructure”, etc.

For a simple example, suppose one had the following Python
code:

def einstein(mass, speed_of_light):
energy = mass*(speed_of_light ** 2.0)
return energy

To bring this code into GenApp, one needs to write a JSON
text file describing the input and output as shown in Fig. 3. Next,
the module developer must either modify the executable’s code or
write a wrapper script to accept JSON input from the command
line and appropriately map the module defined input variables
to local variables or known inputs of the executable. Similarly,
the executable’s output must be mapped to JSON as specified in

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Emre Brookes and Joe Stubbs

Figure 3: An example of a GenAppmodule definition file wrapping a Python executable (left), and the generated applicationUI
(right). The module file contains JSON text describing input and output. Each module:fields value corresponds to a UI element
as indicated in the call-outs. Figure © 2019 Emre Brookes

the module definitions. More details on wrapping executables in
GenApp are provided in [4].

2.3.3 Execution model. During the running of an application, a
user navigates to the specific module, fills out the input fields in
the UI and submits the job. The application assembles the user’s
input into a JSON input object which is passed as input to the
executable. The executable processes this input and produces a
JSON output object which is returned in its output. This output
is eventually passed to UI which populates the output fields in
the UI. The specifics of execution handling are target language
dependent. In this case, we consider the directives:language “html5”
for generated science gateways. Available and default compute
resources are defined in appconfig:resources. An example extract
of resource information from appconfig follows:
,"resources" : {

"local" : ""
,"compute0" : "ssh compute-0-0"
,"compute1" : "ssh compute-0-1"
,"airavata" : {

"run" : "airavatarun"
,"properties" : {...}

}
,"oscluster" : {

"run" : "oscluster"
,"properties" : {...}

}
}
,"resourcedefault" : "local"

In this extract, appconfig:resources:local runs on the web server
and can be useful for low overhead execution. The entries appcon-
fig: resources:compute0 and :compute1 give examples of simple
ssh accessible resources. Any valid shell command can be specified
and will be prefixed to the command line starting the executable12.
If the value of the resources entry is an object, the :run value of
the object will be used as the command line prefix, e.g. appcon-
fig:resources:oscluster:run. This case is required for resources such
as “airavata”13 and “oscluster”14 that require additional properties
defined.

To add a new resource, one simply needs to add a new entry
to appconfig:resources. A module definition file can specify a pre-
ferred resource in module:resource, otherwise, the global appcon-
fig:resourcedefault will be used.

2.4 Related Work
TheAbaco platform can be comparedwith two broad classes of offer-
ings: containers-as-a-service and functions-as-a-service. Amazon’s

12For example, a load balancer or a program to allow the user to choose a resource
could be used.
13Queue-manged resources
14Elastic computing via OpenStack

GenApp, Containers and Abaco PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Elastic Container Service, Google’s Container Engine and open
source alternatives like Apache Mesos and Kubernetes provide con-
tainer orchestration on cloud infrastructure. These systems excel at
scheduling and scaling stateless microservices packaged into con-
tainer images. More recently, commercial functions-as-a-service
offerings such as Amazon Lambda and Google Cloud Functions as
well as open source projects like OpenWhisk and OpenFaaS have
emerged to provide on-demand execution of singular functions.

Abaco provides functions-as-a-service but with Actor Model
semantics, where actor executions can return results and state
can be persisted across executions. By allowing arbitrary Docker
images for functions, Abaco provides a more flexible execution
environment than that offered by services such as Lambda or Google
Cloud Functions, where the execution environment is limited to a
small number of predefined language runtimes. While most other
functions-as-a-service platforms expect messages to be executed as
they are received and in parallel, Abaco’s internal queuing system
can buffer tens of thousands of messages to a single actor and can
thus support long (on the order of hours) executions for stateful
actors. Additional Abaco features such as POSIX interfaces to high-
performance storage and access to more memory and CPUs for
actor executions make Abaco a better fit for research computing
workloads.

We know of no other framework apart from GenApp which can
build applications to an extensible variety of target languages. The
closest match of which we are aware is HUBzero’s Rappture[12]
toolkit which reads XML files to build tools for HUBZero, however,
our experience was that HUBZero did not provide a navigable and
controllable "application" environment as might be expected in a
GUI environment, rather a collection of separate "tools".

3 NEW DEVELOPMENTS
3.1 Containerized GenApp
GenApp itself can now be deployed in a container. A container’s
natural isolation allows transportability of GenApp. We recently
utilized this for integration with the NSF-funded Seedme2 project15
where GenApp is co-hosted with Seedme2 in separate containers.
An Ubuntu based container image is hosted on DockerHub and can
be accessed via docker pull ehb1/genapp. Usage instruc-
tions are available on https://genapp.rocks/get. For hosts running
Docker, this is the easiest way to test or run GenApp.

To build a Docker container image, Docker reads a “Dockerfile”
which contains a sequence of commands for building the image,
including the base image, and installation of any packages or special
commands. GenApp contains a script for installation, so the work to
implement this was translating these install steps into a Dockerfile.

3.2 Per-module containers
GenApp now supports generation of container images from de-
fined modules with the new target language “docker”. To achieve
GenApp generation of module specific Docker container images,
the Dockerfile must be built from the module definition file, which
required extending the GenApp module definition file to support

15https://dibbs.seedme.org/

dependencies. Once such images are created, Docker can be used
as a compute resource in GenApp’s “html5” target language.

To add dependencies to a GenAppmodule definition file, themod-
ule:dependencies key is added. module:dependencies is an ordered
list of JSON key value pairs. Available keys formodule:dependencies
are:”base”, which can be any available image name; “file” which
will add files; “env” which will set environment variables; “run”
which will run a shell command; and also various helper tags to
simplify installation of packages such as Python-pip, Python-conda
and Perl-CPAN. The full set of supported dependency commands
are available. 16.

For a Perl executable example, the following could be added to
the module file:
,"dependencies" : [
{ "base" : "perl" }
,{ "cpan" : "JSON" }

]

For a Python executable with two file dependencies, one could add:
,"dependencies" : [
{ "base" : "python" }
,{ "file" : ["filename1", "filename2"] }

]

Note that the module:executable is automatically included and
does not need to be specified as a module:dependencies:file. The
task of extending a module definition to include dependencies is rel-
atively straightforward, and any module developer should be aware
of the dependencies of their executable. Nevertheless, it should be
possible to provide a utility to interrogate an executable for depen-
dencies, which would help simplify setup of module dependency
information.

To build the Docker container images, one simply adds “docker”
to the list of target languages in directives:languages. The container
will be named genapp_directives:application:menu:id-module:id
unless directives:dockerhub has been defined as will be described
in the next section.

The generated container images can be executed at the com-
mand line via “docker run genapp_directives:application:menu:id-
module:id /genapp/bin/module:id input” where input is the JSON
input object to the module’s executable. The container will return
the output object from the executable.

Once the container images are built they can be added to ap-
pconfig:resources for execution. For example to run on the local
host with a web server user of “www-data”, one could include in
appconfig:17

,"docker-local" :
"docker run -v __rundir__:/genapp/run \
--user www-data \
genapp___application__:__menu:id__-\
__menu:modules:id__ \
/genapp/bin/__menu:modules:id__"

Note that the text prefixed and suffixed with double underscores
will be dynamically modified with the appropriate values during
module execution. The __rundir__ is a job specific directory which

16https://genapp.rocks/learn under documentation → advanced topics → module
dependencies
17Note the \’s are included here for formatting. In practice, the quoted value of :docker-
local would be in one line.

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Emre Brookes and Joe Stubbs

is mounted to the container. This strategy could be extended by
prefixing an ssh command to the above value of :resources:docker-
local and creating a new resource, say :resources:docker-ssh, but
one must take care to ensure an appropriate file system share if
job input files are consumed or output files are produced by the
executable.

To implement the “docker” target language required writing a
target-language definition file and code fragments for the install
script. This code is then assembled and run during the GenApp
generation run. The generated code has access to the module def-
inition data and proceeds by writing the appropriate Dockerfile
from the information in the module file (module:dependencies,
module:executable) for each module and subsequently builds the
container images.

3.3 Abaco integration
Abaco has been integrated as a compute resource in GenApp. The
docker images produced by the “docker” target language are Abaco
compatible. Abaco runs the container with the input object placed
in an environment variable. Abaco compatibility of GenApp con-
tainers is achieved by adding an entry to the Dockerfile describing
the modules’s container as follows:18

CMD /genapp/bin/module:executable `echo $MSG`

To run on Abaco, the image must be pushed to Dockerhub. This
is enabled by adding a directives:dockerhub entry, e.g.:
"dockerhub" : {

"id" : ""
,"user" : "docker hub user name"

}

The directives:dockerhub:user must be registered with Docker
and the user must docker login before running GenApp for
target language “docker”. Once this is setup, the image will auto-
matically be pushed to Dockerhub when GenApp generation is run.
The directives:dockerhub:user/ will be prefixed to the generated
docker image name, as well as the optional :dockerhub:id. Note
the image name contains only the directives:dockerhub:user, di-
rectives:application and the optional directives:dockerhub:id. The
module specific information is the the image tag. For example, a
given directives:dockerhub:user of “xyz”, directives:application of
“demo”, menu:modules of “simulate” and a menu:modules:simulate
containing “energy” and “md”, docker image list would re-
turn:
REPOSITORY TAG
xyz/genapp_demo simulate-energy
xyz/genapp_demo simulate-md

To run these images via GenApp on Abaco, one must first regis-
ter with Abaco as described in its documentation19. The steps of
creating a TACC account20 and generating a token are currently
required.21 Once those steps are completed, one must add this
information to secrets:abaco. For example:
"abaco" : {

"host" : "https://api.tacc.utexas.edu"

18This is handled automatically by GenApp’s “docker” target language.
19https://abaco.readthedocs.io/en/latest/getting-started/index.html
20Or elsewhere if so hosted.
21We will in future add a utility to GenApp to create this token.

,"username" : ""
,"password" : ""
,"api_key" : ""
,"api_secret" : ""

}

Where the values are filled in with the appropriate information.
Finally, one can add the resource to appconfig:resources as follows:

,"abaco" : "abaco/abacorun"

The abaco resource runs the abaco/abacorun php wrapper which
handles the API calls to secrets:abaco:host to register, execute, re-
trieve the results and delete the actor.

To implement Abaco execution required extending the “docker”
target language code fragments to check directives:dockerhub. If
directives:dockerhub is set, the container names are adjusted with
the directives:dockerhub:user and id and the images are pushed to
Dockerhub. Additionally, running on Abaco required writing a new
program “abacorun” which takes the JSON input object from the
command line, reads the secrets, makes a sequence of Abaco API
calls to run the module’s container, retrieve the results and finally
write the JSON output object to standard output. The output object
contains the results of the executable or error information if the
run failed.

3.4 Demo site
AdemonstrationGenApp generatedwebsite is available22. Provided
are examples of two modules: one, a simple "energy" calculator
computing E = mc2; the second, a test of the messaging system
from the executable. There are three instances of each of these
two modules: local execution; execution via a docker container;
and execution via Abaco. For each of these execution methods, the
respective module’s underlying executable is identical. The website
appears as shown in Fig. 4. To assist novice user navigation, tooltips
are generally provided by hovering the cursor over the various
buttons and inputs. The application’s source code is available by
clicking on the triple-bar menu icon at the top left and clicking on
"Source".

To produce the demo site, we installed GenApp23 on a Jetstream
virtual machine. We started with the energy and message modules
of the GenApp tutorial2 application and added the dependencies
information as described in section 3.2. We then copied the en-
ergy.json module definition file to denergy.json and aenergy.json
for container and Abaco execution respectively. To the denergy.json
file we added resource:docker-local and to the aenergy.json file we
added resource:abaco. The same steps were performed for the mes-
sage.json file, producing modules amessage and dmessage. The six
modules’ ids (energy, message, denergy, dmessage, aenergy, ames-
sage) were added to the menu.json file to allow them to appear
to the user. We added appconfig:resources:docker-local and app-
config:resources:abaco as described in sections 3.2 and 3.3. The
secrets.json file was created with abaco:host, :username, :password,
:api_key and :api_secret values taken from our TACC and Abaco
registration. directives:secrets was set to the path of our secrets.json
file. directives:dockerhub:user was set to our DockerHub user. direc-
tives:languages was set to [html5, docker]. The GenApp command

22https://test.genapp.rocks/pearc19
23https://genapp.rocks/wiki/wiki/get

GenApp, Containers and Abaco PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Figure 4: GenApp demo website. Example modules are provided for local, container and Abaco execution. The menu icon is
at the top left. Clicking the menu icon will reveal the "Source" entry. The login and registration controls are at the top right.
The Feedback tab is on the right. Note that login and registration are not required to run the examples. Figure © 2019 Emre
Brookes

line program genapp was invoked which handled all the steps
of building the website, the Docker container images and pushing
them to DockerHub. The result of these steps is the working demo
site.

4 USE CASES
Having module’s executables containerized provides ease of execu-
tion portability. Our plan is to enhance existing GenApp application
modules with dependencies to allow generation of docker container
images, allowing new and existing deployments of applications to
utilize container enabled resources. Abaco is one such container
resource. Additionally, having the depencencies defined allows au-
tomation of installation of executables in traditional non-container
resource environments.

5 FUTUREWORK
GenApp modules may require user file input and executable gener-
ated file output. Support for staging of input files and recovery of
output files will be added. GenApp currently uses an Actor per job
for Abaco submission. Long lived “stateless” Actors could process
multiple jobs, reducing overhead for job startup and shutdown.
Other container technologies exist besides Docker, for example Sin-
gularity containers24 are often used in HPC environments. Given a
use case, GenApp could be extended to optionally build Singularity
containers.

6 CONCLUSIONS
Extending GenApp capabilities is a straightforward process. Defi-
nition file driven GenApp now supports container generation from
defined modules in an Abaco compatible format which can option-
ally be pushed to DockerHub. Executable dependencies are added
to the module definition file to enable containerization. Container-
ization simplifies transportation of executables across resources,

24https://singularity.lbl.gov

enhancing ease of generated application deployment. Abaco re-
sources support the Actor Model of concurrent computation and
has been integrated as a resource with GenApp.

ACKNOWLEDGMENTS
This work is supported by the NSF grants CHE-1265817, OAC-
1740097 and OAC-1912444 and NIH grant GM120600 to E. Brookes
and NSF grant OAC-1740288 to J. Stubbs. We are grateful to appli-
cation developers and their users for their valuable feedback and
suggestions. This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by National
Science Foundation grant number ACI-1548562.

REFERENCES
[1] Stubbs J., Vaughn M., and Looney J. 2018. Rapid Development of Scalable, Dis-

tributed Computation with Abaco. Proceedings of the 10th International Workshop
on Science Gateways (2018).

[2] Emre Brookes. 2014. An open extensible multi-target application generation
tool for simple rapid deployment of multi-scale scientific codes. In Proceedings
of the 2014 Annual Conference on Extreme Science and Engineering Discovery
Environment. ACM, 53. https://genapp.rocks

[3] Emre Brookes, Nadeem Anjum, Joseph Curtis, Suresh Marru, Raminder Singh,
and Marlon Pierce. 2015. The GenApp framework integrated with Airavata for
managed compute resource submissions. Concurrency and Computation: Practice
and Experience 27, 16 (2015), 4292–4303.

[4] Alexey Savelyev and Emre Brookes. 2017. GenApp: Extensible tool for rapid
generation of web and native GUI applications. Future Generation Computer
Systems (2017). https://doi.org/10.1016/j.future.2017.09.069

[5] Stephen Perkins, David Wright, Hailiang Zhang, Emre Brookes, Jianhan Chen,
Thomas Irving, Susan Krueger, David Barlow, Karen Edler, David Scott, and
N. Terrill. 2016. Atomistic modelling of scattering data in the Collaborative
Computational Project for Small Angle Scattering (CCP-SAS). Journal of Applied
Crystallography 49, 6 (2016). http://ccpsas.org

[6] 2016. Jetstream, first NSF-supported cloud infrastructure for science & engi-
neering research, to launch September 1. https://itnews.iu.edu/articles/2016/
jetstream, -first-nsf-supported-cloud-infrastructure-for-science--engineering-
research, -to-launch-september-1.php. (2016). Accessed: 2017-03-01.

[7] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Peterson,
Ralph Roskies, J. Ray Scott, and NancyWilkins-Diehr. 2014. XSEDE: Accelerating
Scientific Discovery. Computing in Science & Engineering 16, 5 (2014), 62–74.
https://doi.org/10.1109/MCSE.2014.80

https://genapp.rocks
https://doi.org/10.1016/j.future.2017.09.069
http://ccpsas.org
https://itnews.iu.edu/articles/2016/jetstream,-first-nsf-supported-cloud-infrastructure-for-science--engineering-research,-to-launch-september-1.php
https://itnews.iu.edu/articles/2016/jetstream,-first-nsf-supported-cloud-infrastructure-for-science--engineering-research,-to-launch-september-1.php
https://itnews.iu.edu/articles/2016/jetstream,-first-nsf-supported-cloud-infrastructure-for-science--engineering-research,-to-launch-september-1.php
https://doi.org/10.1109/MCSE.2014.80

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Emre Brookes and Joe Stubbs

[8] Suresh Marru, Lahiru Gunathilake, Chathura Herath, Patanachai Tangchaisin,
Marlon Pierce, Chris Mattmann, Raminder Singh, Thilina Gunarathne, Eran
Chinthaka, Ross Gardler, and A. Slominski. 2011. Apache airavata: a framework
for distributed applications and computational workflows. In Proceedings of the
2011 ACM workshop on Gateway computing environments. ACM, 21–28.

[9] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. 2012. OpenStack:
Toward an Open-source Solution for Cloud Computing. International Journal of
Computer Applications 55, 3 (October 2012), 38–42. Full text available.

[10] Emre Brookes and Alexey Savelyev. 2017. GenApp Integrated with OpenStack
Supports Elastic Computing on Jetstream. In Proceedings of the Practice and
Experience in Advanced Research Computing 2017 on Sustainability, Success and
Impact (PEARC17). ACM, New York, NY, USA, Article 11, 8 pages. https://
doi.org/10.1145/3093338.3093356

[11] 2017. ECMAScript Language Specification. https://www.ecma-international.org/
ecma-262/5.1/. (2017). Accessed: 2017-03-01.

[12] M. McLennan and R. Kennell. 2010. HUBzero: A Platform for Dissemination and
Collaboration in Computational Science and Engineering. Computing in Science
Engineering 12, 2 (March 2010), 48–53. https://doi.org/10.1109/MCSE.2010.41

https://doi.org/10.1145/3093338.3093356
https://doi.org/10.1145/3093338.3093356
https://www.ecma-international.org/ecma-262/5.1/
https://www.ecma-international.org/ecma-262/5.1/
https://doi.org/10.1109/MCSE.2010.41

	Abstract
	1 Introduction
	2 Background
	2.1 Containers
	2.2 Abaco
	2.3 GenApp
	2.4 Related Work

	3 New Developments
	3.1 Containerized GenApp
	3.2 Per-module containers
	3.3 Abaco integration
	3.4 Demo site

	4 Use cases
	5 Future Work
	6 Conclusions
	Acknowledgments
	References

